Machine Learning

Dr. Rajesh Kumar

PhD, PDF (NUS, Singapore) SMIEEE, FIET (UK), FIETE, FIE (I),SMIACSIT, LMISTE, MIAENG Professor, Department of Electrical Engineering Professor, Centre of Energy and Environment Malaviya National Institute of Technology, Jaipur, India, 302017 Tel: (91) 9549654481 http://drrajeshkumar.wordpress.com rkumar.ee@mnit.ac.in, rkumar.ee@gmail.com

- Combination of decision trees used to predict the observation
- The decision trees are formed based on any of the following
 - Random selection of features / attributes
 - Random selection of data
- The prediction is based on ensemble method bagging

nttps://drraipe

- Combination of decision trees used to predict the observation
- The decision trees are formed based on any of the following
 - Random selection of features / attributes
 - Random selection of data
- The prediction is based on ensemble method bagging

Ensemble methods is a machine learning technique that combines several base models in order to produce prediction

- Combination of decision trees used to predict the observation
- The decision trees are formed based on any of the following
 - Random selection of features / attributes
 - Random selection of data
- The prediction is based on ensemble method bagging
 - Bagging:

Votes are taken from forest of decision trees and prediction is done based on majority

Original Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	Notro
Yes	No	Yes	167	Yes

Bootstrapped Dataset

	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
IMST.NC	Yes	Yes	Yes	180	Yes
nk ² .	No	No	No	125	No
	Yes	No	Yes	167	Yes
	Yes	No	Yes	167	Yes

Step 2: Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step.

	s.			-			
	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease		
mar.we	Yes	Yes	Yes	180	Yes		
dieshko	No	No	No	125	No		
-osilldric.	Yes	No	Yes	167	Yes		
17CK	Yes	No	Yes	167	Yes		

Bootstrapped Dataset

Using a bootstrapped sample and considering only a subset of the variables at each step results in a wide variety of trees.

The variety is what makes random forests more effective than individual decision trees.

	S.	on'			
5	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
mar.we	Yes	No	No	168	YES

In this case, "Yes" received the most votes, so we will conclude that this patient has heart disease.

Original Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	Notro
Yes	No	???	???	No

Random Forests consider 2 types of missing data...

- 1) Missing data in the original dataset used to create the random forest.
- 2) Missing data in a new sample that you want to categorize.

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	???	

The general idea for dealing with missing data in this context is to make an initial guess that could be bad, then gradually refine the guess until it is (hopefully) a good guess.

APress.com

Step 1: Build a random forest...

Step 2: Run all of the data down all of the trees.

Filled-in Missing Values

			0		S.						
Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	rdpre Be	cau	se	sa	mp	le 3	3
No	No	No	125	No	inat.we	1	1	2	3	4	
Yes	Yes	Yes	180	Yes	and sample 4	2 3					
Yes	Yes	No	210	Notre	same leaf	4			1		
Yes	Yes	No	180	No	We	e pu	t a	1			
					h	nere					

Filled-in Missing Values

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	
No	No	No	125	No	
Yes	Yes	Yes	180	Yes	es
Yes	Yes	No	210	Notre	
Yes	Yes	No	180	No	

Then we divide each proximity value by the total number of trees. In this example, assume we had 10 trees.

Weighted average = $(125 \times 0.1) + (180 \times 0.1) + (210 \times 0.8)$

								al.	Jord	press.	1 - 1	Th the :	nat i pro = di	me oxin ista	ans nity nc	s / va e	lues
	1	2	3	4			1	2 3	4				1	2	3	4	
1		2	1	1		1		0.20.1	10.	1		1		0.8	0.9	0.9	
2	2		1	1		2	0.2	0.1	10.	1		2	0.8		0.9	0.9	
3	1	1		10	.1101	3	0.10	D.1	1			3	0.9	0.9		0	
4	1	1	10		ttps.	4	0.10	0.1 1				4	0.9	0.9	0		

Gradient Boosting Tree

- Type of sequential ensemble method Boosting
- Group of decision trees connected sequentially
- Boosting algorithms converts weak learners to strong learner
 - Objective is to reduce error in prediction (MSE generally used) $MSE = \sum_{i=1}^{n} (y_i - y_i^p)^2$

where, y_i is ith target value, $y_i^{p_i}$ is ith prediction

- The base learners (decision trees) are generated sequentially
- The base learner uses gradient descent and update prediction based on a learning rate
- The next learner is feed with weighted previously mislabelled instances to enhance overall performance

Step 2a: Evaluation of first decision trees starts and feed prediction to second decision tree

Step 2.(n-1): Sequentially the prediction of the previous decision tree feed to the next decision tree

