Machine Learning

Dr. Rajesh Kumar

PhD, PDF (NUS, Singapore)

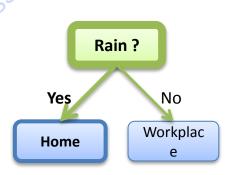
SMIEEE, FIET (UK), FIETE, FIE (I), SMIACSIT, LMISTE, MIAENG
Professor, Department of Electrical Engineering
Professor, Centre of Energy and Environment
Malaviya National Institute of Technology, Jaipur, India, 302017
Tel: (91) 9549654481

http://drrajeshkumar.wordpress.com
rkumar.ee@mnit.ac.in, rkumar.ee@gmail.com

UNSUPERVISED LEARNING Regression Dimension Decision Yes Reduction **Dimension Reduction** Tree Speed LDA Yes Yes Topic Probabilistic? Modelling? No Responses No SVD PCA Yes Numeric Yes Prediction Clustering k-means k-modes Yes No Prefer Categorical Variables Probability Hierarchical Yes Yes Yes **GMM** Need to Hierarchical specify k No **DBSCAN**

Decision Tree

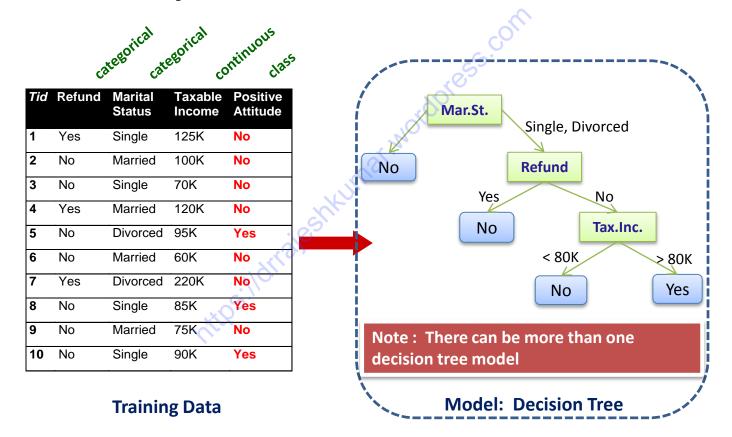
- Decision tree is a classifier in the form of a tree structure
 - Decision node:Specifies a test on a single attribute
 - Leaf node: Indicates the value of the target attribute
 - Arc/edge: Split of one attribute
 - Path:
 A disjunction of test to make the final decision
- Decision trees classify instances or examples by starting at the root of the tree and moving through it until a leaf node

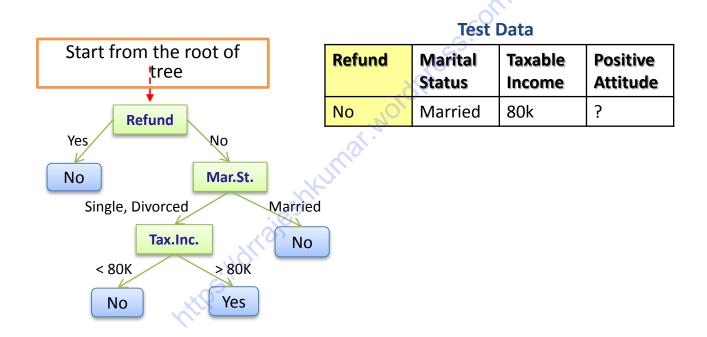


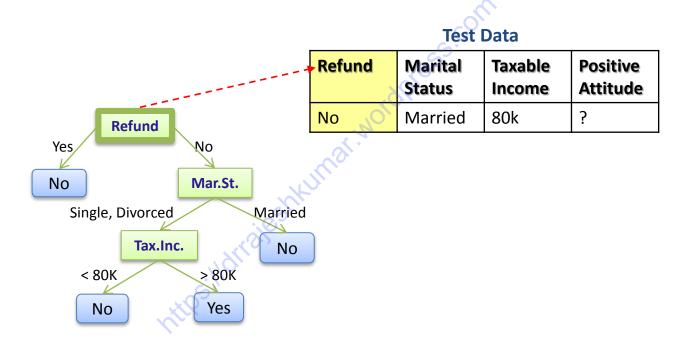
Decision Tree

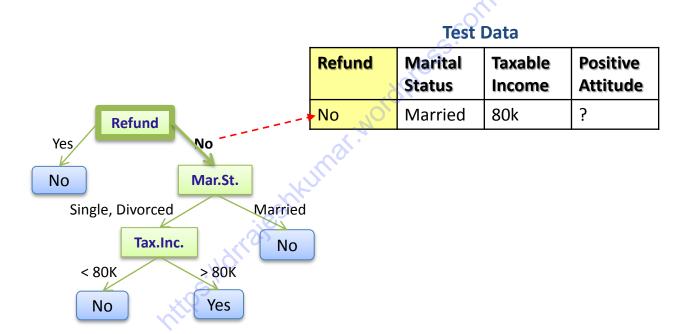
- Decision trees are powerful and popular tools for
 - Classification
 - Prediction
- Decision trees represent rules, which can be understood by humans and used in knowledge system such as database.
- Relatively fast compared to other classification models

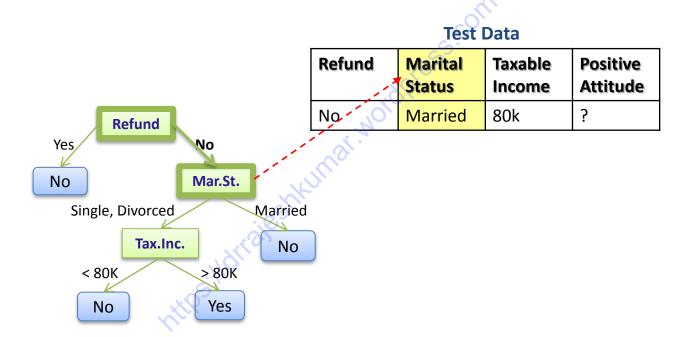
Example of a Decision Tree

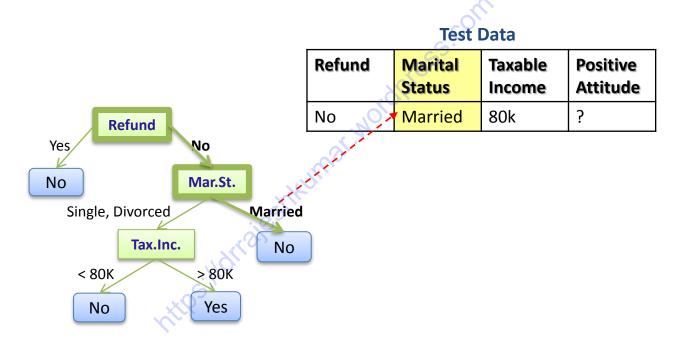


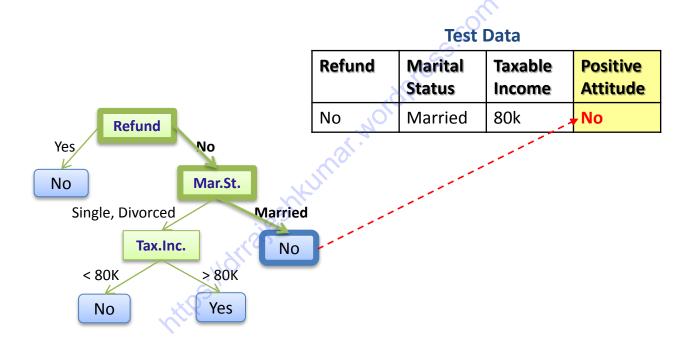












Predict if John will play tennis

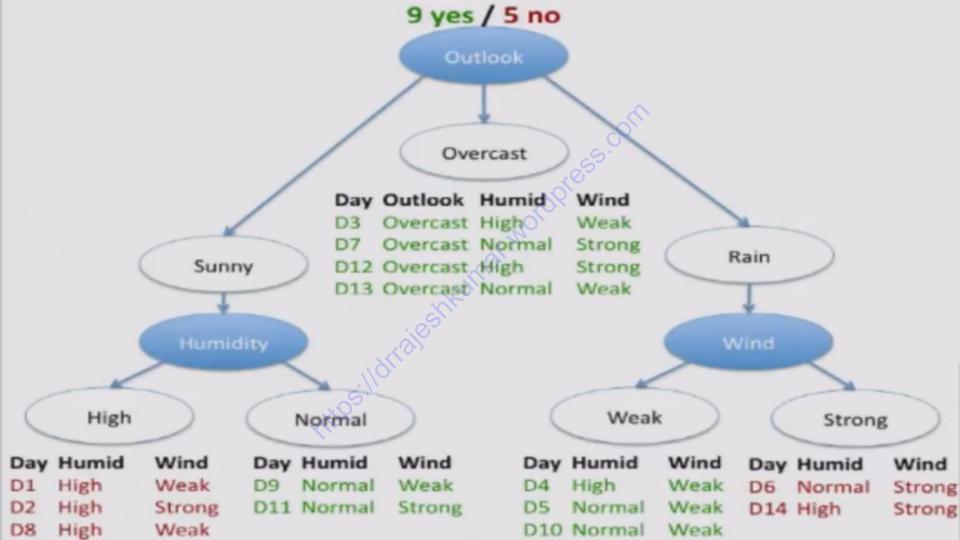
D15

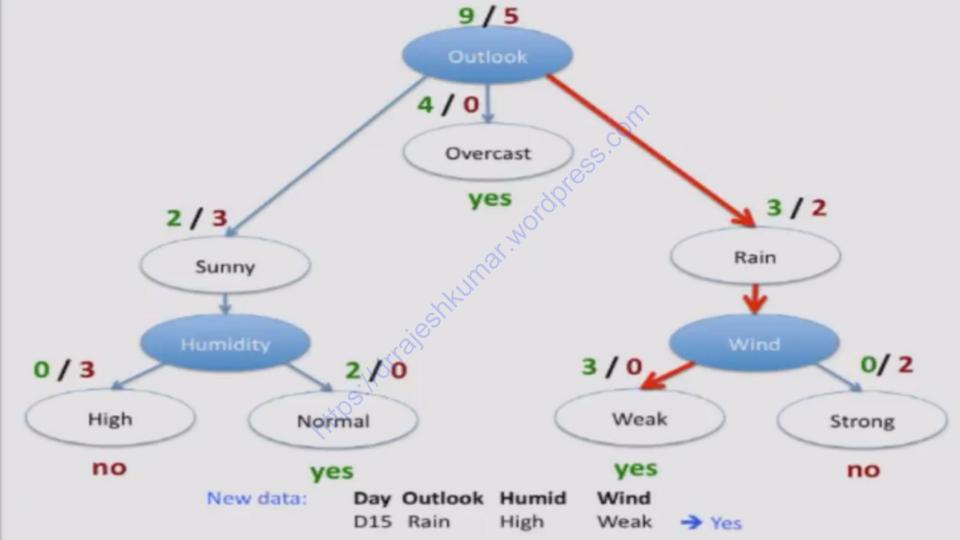
Rain

- Hard to guess
- Try to understand when John plays
- Divide & conquer:
 - split into subsets
 - are they pure?(all yes or all no)
 - if yes: stop
 - if not: repeat
- See which subset new data falls into

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
DZ	Overcast	Normal	Strong	Yes
. 08	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Weak





Which attribute to split on?

- · Want to measure "purity" of the split
 - more certain about Yes/No after the split
 - pure set (4 yes / 0 no) => completely certain (100%)
 - impure (3 yes / 3 no) => completely uncertain (50%)
 - can't use P("yes" | set):
 - must be symmetric: 4 yes / 0 no as pure as 0 yes / 4 no

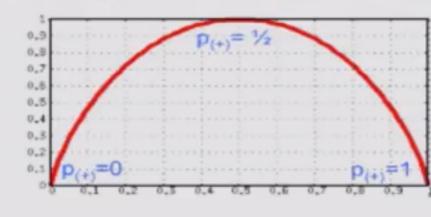
Entropy

- Entropy: $H(S) = -p_{(+)} \log_2 p_{(+)} p_{(-)} \log_2 p_{(-)}$ bits
 - S ... subset of training examples
 - $-p_{(+)}/p_{(-)}...$ % of positive / negative examples in S
- Interpretation: assume item X belongs to S
 - how many bits need to tell if X positive or negative
- impure (3 yes / 3 no):

$$H(S) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$
 bits

pure set (4 yes / 0 no):

$$H(S) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$
 bits



Information Gain

- Want many items in pure sets
- Expected drop in entropy after split:

- Mutual Information
 - between attribute A and class labels of S

```
Gain (S, Wind)

= H(S) - \frac{8}{14} H(S_{weak}) - \frac{6}{14} H(S_{weak})

= 0.94 - \frac{8}{14} * 0.81 - \frac{6}{14} * 1.0

= 0.049
```

