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What is PCA?

* Unsupervised exploratory statistical technique used to:
— Simplify and reduce dimensionality of the given dataset
— Visualize data with high dimensionality

* Considers maximized variance
— Maximum variance of a component = a more significant factor

e Dimensions — different features that describe the data

— Example: For 20 students, the number of hours studied and the marks
obtained are provided.

e Here number of hours and marks obtained are the dimensions



Dimensionality Reduction



Dimensionality Reduction




e Linear Transformation to determine a new coordinate
system for the dataset

— Greatest variance for any projection of the data set lies on
the first axis = First Principal Component

— 2" greatest variance gives the Second Principal
Component

* Dimensionality may be reduced by eliminating the
principal components with least variance



Variance and Covariance

Measure how the data is distributed around the mean of that data.

Variance — Gives the deviation from the mean for data points in a
single dimension.

Covariance — Measures the variation from the mean of each
dimension with respect to the other.

* Measures the existence of a relationship between 2 dimensions.

e Square of the standard deviation



Variance?

X-variance



Covariance
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Covariance

e Covariance between two
variables x, y

i=1(X; — ) (¥; — ¥)
n-1

cov(x,y) =

* Covariance matrix: represents
the covariance between
dimensions

— Forms a symmetric N X N matrix
for N dimensional data

— Diagonal gives the variances of
the dimensions



Covariance

Covariance between two
variables x, y

i=1(X; — ) (¥; — ¥)
n-1

cov(x,y) =

Covariance matrix: represents
the covariance between
dimensions

— Forms a symmetric N X N matrix
for N dimensional data

— Diagonal gives the variances of
the dimensions

C =

cov(x,x) cov(x,y) cov(x,z)

cov(y,x) cov(y,y) cov(y, z)
cov(z,x) cov(z,y) cov(zz)

Covariance matrix for 3 dimensions



cov(x,y) =

Covariance

e Covariance between two
variables x, y

i1 (=) —y)
n-1

* Covariance matrix: represents

the

covariance between

dimensions

Forms a symmetric N X N matrix
for N dimensional data

Diagonal gives the variances of
the dimensions

cov(x,x) cov(x,y) cov(x,z)
C = |cov(y,x) cov(y,y) cov(yz)
cov(z,x) cov(z,y) cov(zz)

Covariance matrix for 3 dimensions

Covariance Evaluation

Covariance(x,y

)

Nature of Relationship

=0 X, y are independent
>0 X, Yy move in same direction
<0 X, Y move in opposing

directions




Covariance
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Linear Transformations A
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Linear Transformations
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Linear Transformations
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Steps for PCA - Flowchart
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Steps of PCA

e Given xy, Xy, ....,X, is a set of n (N X 1) vectors

Xi1
x; = |
XiN

*  Calculate the average of each

e Xisthe N X n matrix with columns

This is the mean adjusted data



Steps for PCA

* Develop the covariance matrix by calculating
the covariance matrix C from X

 Each term may be written as

i=n
X;p= X+ Zgjiegi
i=1



Steps for PCA

Develop the covariance matrix by calculating the
covariance matrix C from X

Each term may be written as

i=n igenvector
i=1

Calculate eigenvectors = eg,, eg,,....eg, will be NX1
orthonormal vectors



Steps for PCA

Develop the covariance matrix by calculating the
covariance matrix C from X

Each term may be written as

j: X + S‘gjlogl

Calculate eigenvectors = eg,, eg,,....eg, will be NX1
orthonormal vectors

Here, g; are the coordinates of x; in the space
9gji = (xj — %).eg;



Steps tor PCA — Reduced
Dimension Data Derivation

* Sort eigenvectors according to eigenvalue.
— Matrix E gives the sorted eigenvalues with each column representing an eigenvector.
— E=[eg,;eq,..eq,l]

* Final Data Representation (Feature Vectors):

— Determine Row Feature Vector (RFV) — matrix E transposed so that eigenvectors are in rows
* Most significant eigenvector is at the top

— Determine Zero Mean Data (ZMD) - Mean adjusted data matrix (X) transposed so that
separate dimensions are in each row

Final Data = RFV X ZMD



Example

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial. pdf

Original Data Adjusted Mean Data
X y X y
2.5 24 0.69 0.49
0.5 0.7 -1.31 -1.21
2.2 2.9 0.39 0.99
1.9 2.2 0.09 0.29
3.1 3 ‘ 1.29 1.09
2.3 2.7 0.49 0.79
2 1.6 0.19 -0.31
1 1.1 -0.81 -0.81
1.5 1.6 -0.31 -0.31
1.1 0.9 -0.71 -1.01



Example

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Criginal PCA data
4 T T
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Plot of the Data



Example

e (Covariance matrix

.616555556 .615444444

¢= .615444444 716555556

* Non-diagonal elements >0

— Variables increase/ decrease together.

e Eigenvectors and eigenvalues of C

0490833989

etgenvectors = [1.28402771

-.735178656 -.677873399

eLgenvectors = | 57973399 -.735178656



Example

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Mean adjusted data with eigenvectors overlayed
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Example

Principal Component = Eigenvector with
the highest eigenvalue.

Order the eigenvectors by eigenvalue in
decreasing order

— This gives the significance of each eigenvector.

The less significant vectors may be ignored.

— May result in loss of information
— Smaller the eigenvalues, lesser is the loss of information

Final data set contains reduced dimensions!



Example — Feature Vector and Data

* Feature Vector with both eigenvectors ([eg, eg4])

. [—.677873399 —.735178656]
—-./35178656 .677873399

Can remove the less significant feature from matrix for reduced version.

e Data reconstruction with reduced features based on E and
X!

Final Data = RFV X ZMD



Example — Final Data

X y
-0.827970186 -0.175115307
1.77758033 0.142857227
-0.992197494 0.384374989
-0.274210416 0.130417207
-1.67580142 -0.209498461
-0.912949103 0.175282444
0.099109438 -0.349824698
1.14457216 0.046417258
0.438046137 0.01776463
1.22382056 -0.162675287
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