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What is Differential Evolution(DE)?

• DE is a population-based optimization
algorithm.

• The algorithm was introduced by
Storn and Price in 1996.

• Developed to optimize real parameter,
real valued functions.
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Differential Evolution

• DE is a stochastic, population-based optimization algorithm for solving nonlinear
optimization problem.

• The population is composed of Np individuals

• Every individual in population represents a possible solution

• DE operates in three consecutive steps in every iteration

– Mutation
– Crossover
– Selection
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Main stages of DE algorithm

http
s:/

/d
rra

jesh
ku

m
ar

.w
ord

pre
ss

.co
m



5

Initialize the population
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Mutation

• A parent vector from the current generation 
is called target vector.

• A mutant vector obtained through the 
differential mutation operation is known as 
donor vector.

• Finally an offspring formed by recombining 
the donor with the target vector is called 
trial vector.
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Different Mutation Strategies
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Crossover

• The donor vector exchanges 
its components with the 
target vector X iG to form the 
trial vector.

• CR-Crossover Rate
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Selection

• The fitness of target and trail 
vector is evaluated and the one 
with lowest function value is 
selected for next generation.
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Pseudo Code
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DE Working
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Scope to Create Variants of DE

Three parameters 
to control 

exploitation and 
exploration i.e.

F, Cr, Np

Deterministic 
Parameter Control

Adaptive parameter 
Control

Self-adaptive 
parameter control
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Deterministic Parameter Control

Parameters are altered using a deterministic rule regardless of the feedback from the 
evolutionary search.

i.In first approach, F was created for each individual within the range (0.4, 1) and the 
interval (0.5, 0.7) was selected for Cr

ii.CoDE - Composite DE algorithm
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CoDE

• A trial vector is selected from a set of groups.
• Main objective – To merge many trial vector strategies with different parameters at each iteration 

to construct new trial vectors. 
• The selected strategies are:

• The three pair choices for the control parameter settings:

1. DE/rand/1/bin
2. DE/rand/2/bin
3. DE/current-to- rand/1

1. (F = 1.0, Cr = 0.1)
2. (F = 1.0; Cr = 0.9)
3. (F = 0.8; Cr = 0.2)
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Illustration Of Combining Trial Vector Generation Strategies 
With Control Parameter Settings
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Algo
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Adaptive Parameter Control

Applies an evaluation from feedback of the F relay on an additional parameter (γ) that it is necessary to be 

adjusted.

i.Differential Evolution with Self-Adapting Populations (DESAP)

ii.Fuzzy Adaptive Differential Evolution (FADE)

iii.Self-Adaptive Differential Evolution (SaDE)

iv.Self-Adaptive NSDE (SaNSDE)

v.Self-Adapting Parameter Setting in Differential Evolution (jDE)

vi.Adaptive DE Algorithm (ADE)

vii.Modified DE (MDE)

viii.Modified DE with P-Best Crossover (MDE_pBX)

ix.DE with Self-Adaptive Mutation and Crossover (DESAMC)

x.Adaptive Differential Evolution with Optional External Archive (JADE)

xi.Differential Covariance Matrix Adaptation Evolutionary Algorithm (CMA-ES)
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Differential Evolution With Self-adapting Populations (DESAP)

• DESAP dynamically adjusts the crossover and mutation parameters δ, η and the population size π.

• DESAP performed better than DE in one of De Jong’s five exam problems, whereas the other

solutions are almost identical.

• The mutation factor F is retained as static, and η denotes the probability of implementing an

extra mutation operation by using normally distributed.
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Fuzzy Adaptive Differential Evolution (FADE)
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FADE

• The purpose of using fuzzy logic is to 
make the DE’S control parameters 
adaptive in the minimization process.

• To minimize the error(e) between the 
global optimum and the actual function 
value in case of knowing about global 
optimum value.

• Minimize the change in e of function 
values between successive generation in 
case of knowing nothing about global 
optimum function value.
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Self-adaptive differential evolution (SaDE)

• Self-adaptive differential evolution (SaDE) is simultaneously applied to a pair of mutation 

techniques “DE/rand/1” and “DE/current-to-best/2” 

• In SADE, a mutation strategy is selected probabilistically.

• The 2 mutation startegies used are:

• Probability of one is p1 and another is p2=(1-p1).

• "DE/rand/1" : vi = xR1 + F(xR2 - xR3)
• "DE/current-to-best/1" : vi = xR1 + F(xbest - xi ) + F(xR1 - xR2) 
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SaDE

For population size = NP, randomly generate a vector of size NP 
with uniform distribution in the range [0, 1] for each element.

If jth element of vector <= p1 then DE/rand/1 will be applied to 
the jth individual of population else DE/current-to-best/1 is 
applied.

All trial vectors are evaluated. ns1, ns2  are successful trail 
vectors for both startegies respectively. ns1, ns2  are successful 
trail vectors for both startegies respectively.

Fi = NR(0.5, 0.3) and Cri = NR(Crm, 0.1)
Cr and F are created based on normal distributions for each generation.

http
s:/

/d
rra

jesh
ku

m
ar

.w
ord

pre
ss

.co
m



23

Self-adaptive NSDE (SaNSDE)
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Self-Adapting Parameter Setting in Differential Evolution (jDE)
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Adaptive DE Algorithm (ADE)
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Modified DE (MDE)

• MDE uses only one array.

• Array is updated when a better solution is found.

• F – adjusted by Laplace distribution.

• Improved the convergence speed and fewer evaluation procedures than basic DE.
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Modified DE with p-best crossover (MDE_pBX)
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DE with self-adaptive mutation and crossover (DESAMC)
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Adaptive differential evolution with optional external archive (JADE)
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Differential Evolution with Multiple Strategies

• Four mutation strategies are selected to form a pool.

• One crossover operator is used.

• For each individual mutation strategy is selected randomly from the pool.
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DE-PSO

• Process of DE-PSO is as follows:

Else
PSO Activated (New particle is found using PSO)

Again Selection is done as Basic DE
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Other Hybrid Approaches

Methods hybridized Authors Optimization problems applied to 

DE + Artificial Bee Colony 
(ABC) Algorithm 

Tran et al. Multi-objective optimization for optimal time-cost-quality 
trade-off for planning of construction projects 

DE + Ant Colony Optimization 
(ACO)

Chang et al. Single-objective real parameter engineering optimization 

DE + Bacterial Foraging based 
Optimization (BFO)

Biswal et al. Single-objective continuous parameter clustering problem 

DE + Gravitational Search 
Algorithm (GSA)

Chakraborti et al. Binary optimization problem involving highly 
discriminative feature subset selection 

DE + Invasive Weed 
Optimization (IWO)

Basak et al. Single-objective, bound constrained function optimization 
problems 

DE + Firefly Algorithm(FFA) Abdullah et al. Single-objective nonlinear optimization problem involving 
estimation of biological model parameters 

DE + Fireworks Algorithm 
(FWA)

Zheng et al. Single-objective, bound constrained function optimization 
problems http
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