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Chaos Breeds Life While
Order Breeds Habit

The world is such a busy place, it's chaotic.

b



Chaos is indeterminism at its best — a concept totally foreign and unwelcome in Laplace’s
world. The scientific usage of the word was first coined by Yorke and Li in their ground breaking
paper, "Period Three Implies Chaos (1975)," in which they described particular flows as chaotic.

In short, chaos embodies three important principles:
Extreme sensitivity to initial conditions
Cause and effect are not proportional

Nonlinearity
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It is important to not confuse randomness with unpredictability. Random behavior is not
predictable in a strict sense (one can't make perfect predictions), but it can be
predictable to a high degree of accuracy.

Conversely, unpredictability can be due to randomness (like
> place), but in most cases it's simply due to

our inability to measure the initial state of a system accurately enough and follow it
through accurately enough.

Story of “Butterfly effect” -Sir Edward Lorentz.
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Example of Chaotic Behavior (Logisticimap)
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In recent years, the trend of embedding chaos in the optimization algorithms has grown multifold.
Usually, the chaotic algorithms employ chaotic sequences instead of random numbers, in the
exploration phase or they employ chaotic numbers for decision making in the exploitation phase. In
literature, the positive impact of chaos over the performance of algorithms have been studied and
reported

These Algorithms are subdivided into three categories:
The algorithms which employ chaotic swarming.
The algorithms which employ chaotic decision operators.

The algorithms which employ chaotic bridging.
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Generation of chaotic population instead of random generation at the beginning phase of the
algorithm have been used in many chaotic variants. Chaos Embedded Particle Swarm Optimization
Algorithms (CEPSOAs) were proposed by Alatas et al. (2009).

Chaotic numbers were employed to create colony for bee.

A Uniform big bang-chaotic big crunch optimization based on uniform population method was
proposed by Alatas (2011).

Alatas, B., Akin, E., & Ozer, A. B. (2009). Chaos embedded particle swarm optimization algorithms. Chaos, Solitons &
Fractals, 40, 1715-1734.

Alatas, B. (2010). Chaotic bee colony algorithms for global numerical optimization. Expert Systems wit Applications, 37
,5682-5687.

Alatas, B. (2011). Uniform big bang-chaotic big crunch optimization. Communications in Nonlinear Science and Numerical
Simulation, 16 , 3696-3703.
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The behavior of operators like, crossover, mutation and other deciding operators of the developed
variants have strongly influenced by the chaotic sequence (Caponetto et al.,2003). These variants are
different from the originals because their working mechanisms are guided by chaotic nhumbers instead
of any random number.

Hence, the decision, whether the crossover, mutation and any other operation will be executed or not
is decided by chaotic humbers.

Caponetto, R., Fortuna, L., Fazzino, S., & Xibilia, M. G. (2003). Chaotic sequences to improve the performance of evolutionary
algorithms. IEEE transactions on evolutionary computation, 7 , 289-304.

Gandomi, A., Yang, X.-S., Talatahari, S., & Alavi, A. (2013a). Firey algorithm with chaos. Communications in Nonlinear Science and
Numerical Simulation, 18 , 89-98.
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Recently, the work on chaotic bridging mechanism has been reported for Gravitational
Search Algorithm (GSA) ( Mirjalili & Gandomi, 2017). In this work the authors presented

different chaotic gravitational constants for GSA.

Project on Chaotic Bridging R. Kumar et al.

Mirjalili, S., & Gandomi, A. H. (2017). Chaotic-gravitational constants for the gravitational search algorithm. Applied Soft Computing, 53,
407-419.
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Grasshoppers as herbivores cause severe damage to corps. The swarming behaviour of
grasshopper depends on both nymph and adults. Nymph moves on rolling on the ground and
feed on succulents and soft plants. An adult grasshopper can jump high in search of food and
therefore have a larger area to explore.

As a result, both types of movements are observed i.e. slow movement and abrupt movement
of large range which represents exploration and exploitation. The Grasshopper swarms are
consist of three factors: Social Interaction, Gravitational forces and Wind advection.

X, =8, +G, + 4,

=3 s(d)d, s(r)=g’-¢ G =—ge, A =ué

j=1, j#i
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Position Update Equations

N X, =X
X = Z S(‘XJ—XZ) —ge,tue,
j=L i i
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In GOA, the parameter acts as a bridging mechanism for the exploration and exploitation
phase over the whole course of iterations. In initial phase, the search agents take large steps
to explore the search space in effective manner and in later case these steps are reduced
with the help of linear decrement in the parameter c.

The parameter c variation reduces the comfort zone, attraction and repulsion zone of the
search agents. In a way, it controls the exploration phase by reducing these zones in later
stages of iterative process.
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Parameter c is an important parameter of GOA and used twice in position update equations of
GOA the inner ‘c’ contributes to shrink the attraction and repulsion zone between grasshoppers.

This effect is an analogous to the exploitation phase mechanism. However, with the increment in
iteration counter outer ‘c’ reduces the search and help algorithm to converge.

The comfort of grasshoppers is reduced with every iteration by varying the parameter ¢ from 1
to zero linearly. However, in the proposed ECGOAs, chaotic sequence changes the boundary of
comfort zone randomly in monotonically decreasing trend.

This mechanism assists the search agents to release themselves from local minima trap. The
transition from diversification phase to intensification phase can be achieved slowly with the
employment of different chaotic sequences enabled adaptive approach. This change makes
parameter ¢ adaptive and random concurrently.

Saxena, A., Shekhawat, S., & Kumar, R. (2018a). Application and development of enhanced chaotic grasshopper optimization algorithms.
Modelling and Simulation in Engineering, 2018 .
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Definition of Chaotic Maps

Name of map Equation Range

Chebyshev X;.; = cos(kcos™ (x,)) (-1,1)

Circle Xty = mod{x, + b- (a/27) sin(2nx,, 1)}, a=05, b=02 (0,1)

_ 1, if xk - 0

ALK ka1 = { (1/mod(x, 1)), otherwise (0.1)

Iterative X = sin(an/x;), a=0.7 (m=314) (-1,1)

Logistic Xpoy =ax (1-%x), a=4 (0,1)
(xk/P)! OSxk<P

. . _ | (x.-P)/(0.5<P)), P<x, <05 -

Plecewise 1= (1-P-x)(05-P), 05<x<l-P |4 AD
((1—=xz)/P), 1-P<x; <1

Sine Xy = (a/d)sin(mx,), a=4 (0,1)

Singer Xpoy = W(7.86x, - 23.31x2 + 28.75x3 ~ 13.302875x), p=2.3 (0,1)

Sinusoidal X = axpsin(mxg), a=23 (0,1)

it e { (x,/0.7), x, <07 o1

(10/3)(1 —xk), X >0.7
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Chaotic Maps
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Bench of Shifted and Biased functions

Function Dimension Range Minimum value
Unimodal benchmark function

F,(x) =Y, (x; +30)>-50 30 [-100, 100] -50
Fy(x) =37, Ix; + 10| + [, |x; + 10| - 50 30 [-10, 10] -50
F3(x) = Y7, (T}, x; + 30)* = 50 30 [-100, 100] -50
F,(x) = Y [100((x;,, + 60) — (x; + 60)*)% + ((x; + 60) —1)?] — 50 30 [-30, 30] -50
Fs(x) = Y7 (1(x; + 60) + 0.5])* — 80 30 [-100, 100] -80
Multimodal benchmark function

Fo(x) =Y, —(x; + 300)sin (/T (x; + 300)[) 30 [-500, 500] —418.9829x (32)
Fo(x) = 37, [(x +2)2 =10 cos(2m((x; + 20) + 2) + 10)] - 50 30 [5.12, 5.12] -50
Fg(x)=-20 exp(—O.Z\/( /) Yr (x; + 20)%) —exp((1/n) 21 cos(2m(x;+20))) +20 + e — 80 30 [-32, 32] -80
Fo(x) = (1/4000) ¥, (x; + 400)* — [, cos((x; +400)/(¥i)) + 1-80 30 [-600, 600] —80
Fio(x) = (m/m){10 sin(my,) + XL, (y;— 1)*[1 + 10sin®(7y,. )] + (y, - 1)} - (=50, 50] i

+ 2", u((x; + 30), 10,100, 4) — 80
k(x; —a)", x;>a
where y; = 1+ (((x; + 30) + 1)/(4)), u(x;,ak,m) = { 0, —a<x;<a
k(—x;—a)", x;<-a
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2D- Shapes of Bench
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Results on Unimodal Functions (30-D)

. - UF-1 UF-2 UF-3 UF-5
Algorithm Statistical Parameters “

F1 F2 F3 .&° F4 F5
4.72E+03 7.441252 32384.27 5997.771 11547.22
— 1189.661 20.48785 - 8687.739 1448.595 2648.273
9.54E+02 -34.0542 13561.55 519.9767 1515.979
-33.212 -50 - 3212.748 -23.8636 -49.6495
3.67E+03 6.983289 27021.89 774.8997 7411.605
S 1070.123 15.60652 7021.802 235.0562 2190.903
8.65E+02 -33.8791 14337.61 67.54067 1770.953
-49.6441 .50 3949.875 -22.9774 -46.6215
2.64E+03 -10 23806.04 359978.7 4481.247
TeeenE 806.0854 . 14.47655 6705.574 80425.93 1249.42
5.10E+02 -32.2934 11977.49 18315.61 891.0015
-49.7058 -50 1076.156 -23.1032 -45.3564
1.70E+03 7.013903 22406.58 5997.795 3592.651
o 536.6934 15.66702 5003.504 2352.145 855.4461
5.19E+02 -30.1622 11631.74 1257.859 479.4171
| -44.7163 -50 4640.106 -22.0574 -44.2489
5.67E+03 -10.9219 48674.12 359978.5 6140.426
e . 1268.831 14.3114 11345.15 80389.73 1753.316
8.38E+02 -38.4507 15310.28 18486.14 1587.872
Min o\ -40.7524 -50 4158.884 -22.8343 -49.772
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Results on Unimodal Functions (30-D)

4.56E+03 27.11865 34182.77 359978.7 9207.069
SD

ECGOA6 1504.872 19.65367 7717.328 80359.56 2300.953
Mean 1.26E+03 -35.3059 14001.46 18656.76 1582.863

Min -49.5997 -50 3692.072 -22.1018 -49.5038

Max 4.63E+03 -30 25403.45 774.9623 9922.265

ECGOA7 SD 1378.628 8.3955 5469.37 333.3362 2460.44
Mean 1.21E+03 -44.166 13289.92 179.7019 1421.978

Min -45.0917 -50 5563.239 -22.918 -49.0028

Max 1.68E+03 5.974824 29394.74 359978.8 1992.826

ECGOA8 SD 480.1784 16.12038 5952.928 80354.38 486.393
Mean 3.60E+02 -34.3295 12586.33 18679.3 411.1577

Min -49.5353 -50 4302.044 -23.1203 -49.105

Max 6.40E+03 27.15447 35257.01 263688.6 8310.101

ECGOA9 SD 1522.377 20.47155 8866.673 58719 1997.682
Mean 956.9384 -34.7665 15903.13 14423.59 1573.284

Min -29.154 -50 2960.342 -22.7203 7.090624

Max 7.43E+03 6.999618 28524.88 3813.648 4410.677

ECGOA10 SD 1720.647 15.64801 6605.129 1176.846 1183.068
Mean 1042.276 -35.9717 10828.61 360.635 1071.854

Min -30.8355 -50 1853.837 -23.0794 41.99444

Max 6.52E+03 -10 23228.38 5997.962 3775.516

SD 1578.947 11.67419 5972.024 1329.84 1181.988

S04 Mean 1276.143 -38.4728 12189.96 554.6474 898.7971
Min -43.7533 -50 1178 -22.9119 -49.7339
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Results of Unimodal functions (F-1)
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Results of Function -7
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log (Average-values-so-far)
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Results on Multi Modal Functions (30-B)

e Statistical
Parameters Fé6 F7 F8 F9 F10

Max -8904.24 271.0372 -66.5449 -29.2767 3279130
ECGOA1 SD 1254.676 51.23868 4.119399 13.23356 884472.8
Mean -11029.5 146.0832 -78.6616 -51.4071 1238399
Min -13826.5 66.54498 -80 -69.8688 -66.7927
Max -8832.74 229.4997 -66.7126 -28.9994 3958975
ECGOA2 SD 1142.206 52.12368 2.975594 11.40269 1072203
Mean -10745.6 145.3066 -79.171 -47.2001 1923464
Min -13627.7 15.85951 -80 -69.4254 -68.3447
Max -8376 222.1649 -64.3491 -39.1735 2999948
ECGOA3 SD 1527.962 47.29322 3.493484 10.75939 1038006
Mean -11293.5 164.0275 -78.9705 -60.5568 1442602
Min -14534.5 56.96255 -80 -78.9487 -66.9631
Max -8307.93 256.214 -78.3538 -19.0129 3999958
CGOA SD 1109.739 57.38026 0.506681 12.7704 1292593
- . Mean -11006.9 141.5465 -79.6353 -51.0195 1278308
Min -12818.6 53.7245 -80 -69.8415 -72.994
Max -8540.51 243.5495 -60.3452 -28.1305 4922217
CGOA SD 1220.617 48.63998 5.114423 13.8308 1398789
- 2 Mean -11059.9 146.0103 -78.1109 -47.6149 1688204
Min -13079.1 54.99126 -80 -69.8507 -75.9006
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Results on Multi modal Functions (30-D)

| Max | -8426.57 249.5214 -60.0117 -39.1139 2999975
SD

ECGOA6 1345.302 44.48447 5.512268 11.35779 913600.2
Mean -10663.5 147.7425 -78.1364 -54.092 758313.7

Min -13323.2 72.3563 -80 -78.4344 -72.602

Max -7639.37 244.7659 -60.0035 -9.16557 3742472

ECGOA7 SD 1637.129 40.17972 4.45385 15.04767 1044970
Mean -10769.7 144.7726 -78.7532 -51.0586 1140919

Min -15549.9 79.90368 -80 -69.5569 -73.8642

Max -8815.14 238.5191 -78.3538 -29.0018 3999953

ECGOA8 SD 972.5037 39.69233 0.675579 11.76663 1258635
Mean -11237 163.4965 -79.6707 -50.8158 1575727

Min -12712 90.96168 -80 -69.9456 -68.8842

Max -7711.69 250.473 -78.3538 -19.8782 2999949

ECGOA9 SD 1198.213 40.70405 0.675578 12.726 778483.5
Mean -10681.1 167.9705 -79.6707 -41.31 1095574

Min -12474.2 96.95393 -80 -69.4142 -64.8591

Max -8746.85 269.3226 -60.1722 -19.3277 5249683

ECGOA10 SD 1190.82 41.32749 4.41648 12.70165 1582795
Mean -10661.7 161.4352 -78.7616 -43.6748 1394908

Min -13545.7 84.36102 -80 -69.0206 -61.9252

Max -9225.8 258.3774 -60.0393 -20.1744 3000918

GOA SD 1292.871 50.35495 8.248127 12.85493 975411.2
Mean -11237.6 161.2432 -75.4165 -57.6119 1122615

Min -14022.9 76.48267 -80 -69.8943 -69.4996
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Results of Wilcoxon Rank-Sum Test
(Unimodal)

0.036048 0.169275 0.967635 0.6359 0.3683
0.147847 0.013881 0.336915 N/A 0.0540
0.881731 0.007431 0.989209 0.8817 0.9533
0.228694 0.000986 N/A 0.1404 0.4755
0.081032 0.166588 - 0.524987 0.4094 0.7590
0.072045 0.088317 0.409356 0.9892 0.4340
0.014364 NA 0.310402 0.6554 0.9423
N/A 0.04359 0.797197 0.5792 N/A
0.15557 014484 0.163596 0.1719 0.4971
0.126431 0.043738 0.490334 0.3793 0.9917
GOA 0014364  ~  0.07045 0.755743 0.0036 0.0266
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Results of Wilcoxon Rank-Sum Test
(Multimodal)

0.56 0.776391 0.27 40'\' 0.03 0.08
0.2 0.542772 0.73 8.36E-04 8.36E-04
0.81 0.14042 09@8 ' N/A 0.02
0.59 0.655361 CN/A 0.02 0.23
0.88 0.507505 ,\1_'_'\?" 0.041 0.040 0.019
0.22 0.71498 0.0114 0.0909 N/A
0.19 0.12643,1@‘7 0.525 0.0337 0.085
0.9892 N/A 0.2503 0.0207 0.02
0.23 ‘ ?@5551 0.285 5.85E-06 0.0601
0.14 0.163596 0.6554 1.99E-04 0.081
GOA N/A G:.‘\ ' 0.0208454 0.0239 0.0076 0.01719
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Three truss bar design problem is a well-known
engineering design problem and has been used for
benchmarking of many problems.

The objective of this problem is to minimize the
volume (X) by adjusting cross sectional area (x, y) as
per equations subject to the constraints.

This objective function is nonlinear in nature and
possess three nonlinear constraints which contains
stress parameter.

For solving this optimization problem, no. of search
agents (30) and maximum iterations count (500) are
considered and kept constant for all the variants.
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Results on Three Truss Bar Design
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250
Iteration

300

350 400 450

500

|__Algorithm | Max | _Mean [ __Min___| __SD |

ECGOA1
ECGOA2
ECGOA3
ECGOA4
ECGOA5

ECGOA6

ECGOA7
ECGOA8

ECGOA9
ECGOA10

GOA

266.5823
268.235
268.0221
266.4968
265.6408
266.5492
268.1783
265.4146

268.8148
266.0352

265.528

264.5394
264.6162
264.5413
264.3473
264.2707
264.4754
264.3391
264.1322

264.3604
264.2575

264.3357

29

263.8976
263.8974
263.896
263.8961
263.8963
263.897
263.8971
263.8965

263.8962
263.8961

263.3274

0.851265
1.107169
1.202524
0.76741
0.513983
0.739352
0.936519
0.401496

1.108937
0.562701

0.57364



XF1

Parameter estimation of Frequency Modulated synthesizer is a six dimensional optimization
problem and a part of FM sound wave synthesis. The problem is formulated as the parameter
estimation for generation of the sound as per the target sound. The problem is complex and
multimodal in nature. Variable range (-6.4,6.35)

X = {al,a)l,az,a)z,a3,a)3}

W) =a, sin(wtf+a, sin(wtO+a, sin(at0)))
Y, =(1.0) sin( (5.0):0—(1.5)sin((4.8)t6)+(2.0) sin((4.9)t6’)))

100

Min f = Z( y(0) =y, (1)
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Function Value (log)

Results on FM Sound Wave Synthesis

Aigorithms | Min | Mac | _Mean | D |

IRE ECGOA1 . 14.048 26.720 20.748 2.754
FCG0al ECGOA2 8.416 25.560 20.266 4.067
—— ECGOA2 ECGOA3 © 11.407 27.283 20.652 4.335
——— ECGOA3 ECGOA4 0.00000014 27.280 19.863 5.439
e = eccons |
10 l . ECGOA4 ECGOA5 8.416 27.354 20.708 4.771
: N —— ECGOA6 8.416 26.522 19.687 5.183
C ECGOA7 10.177 25.913 18.830 4.596
——— ECGOA6
N ECGOA8 0.000 26.999 19.108 5.710
10 ECGOAQ ECGOA9 11.549 27.123 20.896 4.064
— ECGOAS ECGOA10 13.393 27.462 21.266 3.890
e ——— ECGOAY 8.416 26.745 20.110 4.673
102} A ECGOAL0 CPSOH 3.45 42.52 27.08 60.61
L GOA GWO 1.9311 26.03 25.1633 5.9177
. . . : : X TRIBES-D 2.22 22.24 14.68 4.57
0 500 1000 1500 2000 2500 3000 CGSA 8.4161 24.71 17.43 4.1609
Iteration G-CMA-ES 3.326 55.09 38.75 16.77

Advances in Optimization,MNIT,Jaipur 31



Exploration and exploitation phases of a metaheuristic algorithm are connected with a bridging
mechanism. The efficacy of this bridging mechanism is important to have better convergence
characteristics, solution quality and optimization performance.

10 different chaotic maps have been embedded with the conventional GOA parameter ‘c’ and
chaotic mechanisms have been proposed. These mechanisms enable exploration phase till last
iteration with chaotic properties.

Ten shifted and biased bench mark functions have been considered to benchmark the problems.
The proposed variants have been evaluated on 30-dimension and 50-dimension (in Paper) bench
mark problems

The application of these variants on three truss bar design problem and parameter estimation
of frequency modulated sound wave synthesis problem have also been investigated.

It is observed that the performance of the developed variants is competitive to other
contemporary algorithms. In some cases, variants outperform.
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